ROS2 Driver Observe#
What you’ll do
ROS2
cmd_vel을 받아setCommand(v, omega)를 업데이트합니다.Driver수신 큐를 처리해vehicle_speed,battery_voltage토픽을 발행합니다.마지막 명령을 주기적으로 재전송할 수 있습니다.
Prerequisites
ROS2 환경
Next
이 튜토리얼은 driver_observe 예제를 ROS2 노드로 옮겨,
속도/배터리를 토픽으로 발행하는 구조를 단계별로 만들고 이해하는 데 집중합니다.
목표#
ROS2 노드에서 Driver 시작
/cmd_vel을 구독해setCommand(v, omega)업데이트Driver 수신 큐를 drain 해서
/vehicle_speed,/battery_voltage발행마지막 명령을 주기적으로 재전송 (선택)
단계별 구현 가이드#
단계 1) include 준비#
#include "KMC_driver.hpp"
#include <rclcpp/rclcpp.hpp>
#include <geometry_msgs/msg/twist.hpp>
#include <std_msgs/msg/float32.hpp>
#include <chrono>
#include <optional>
#include <string>
단계 2) 노드 클래스 뼈대#
class KmcHardwareDriverObserveNode final : public rclcpp::Node {
public:
KmcHardwareDriverObserveNode() : Node("kmc_hardware_driver_observe_node") {
// 다음 단계에서 파라미터/Driver 설정을 채운다.
}
~KmcHardwareDriverObserveNode() override { driver_.stop(); }
private:
KMC_HARDWARE::Driver driver_;
};
단계 3) 멤버 변수 준비#
rclcpp::Publisher<std_msgs::msg::Float32>::SharedPtr speed_pub_;
rclcpp::Publisher<std_msgs::msg::Float32>::SharedPtr battery_pub_;
rclcpp::Subscription<geometry_msgs::msg::Twist>::SharedPtr cmd_sub_;
rclcpp::TimerBase::SharedPtr rx_timer_;
rclcpp::TimerBase::SharedPtr cmd_timer_;
std::string port_;
int baud_{921600};
double control_rate_hz_{100.0};
double vehicle_speed_rate_hz_{50.0};
int command_timeout_ms_{200};
double command_refresh_hz_{50.0};
int realtime_priority_{-1};
int cpu_affinity_{-1};
double battery_hz_{1.0};
float last_cmd_v_{0.0f};
float last_cmd_w_{0.0f};
std::optional<rclcpp::Time> last_cmd_received_;
단계 4) 파라미터 선언#
port_ = declare_parameter<std::string>("port", "/dev/ttyKMC");
baud_ = declare_parameter<int>("baud", 921600);
control_rate_hz_ = declare_parameter<double>("control_rate_hz", 100.0);
vehicle_speed_rate_hz_ = declare_parameter<double>("vehicle_speed_rate_hz", 50.0);
command_timeout_ms_ = declare_parameter<int>("command_timeout_ms", 200);
command_refresh_hz_ = declare_parameter<double>("command_refresh_hz", 50.0);
realtime_priority_ = declare_parameter<int>("realtime_priority", -1);
cpu_affinity_ = declare_parameter<int>("cpu_affinity", -1);
battery_hz_ = declare_parameter<double>("battery_hz", 1.0);
단계 5) Driver 옵션 구성 + 시작#
배터리 요청 주기(battery_hz)도 옵션에 반영합니다.
옵션 필드 의미는 Driver::Options를 기준으로 합니다.
KMC_HARDWARE::Driver::Options opt;
opt.port = port_;
opt.serial.baudrate = baud_;
opt.serial.hw_flow_control = true;
opt.control_rate_hz = control_rate_hz_;
opt.vehicle_speed_rate_hz = vehicle_speed_rate_hz_;
opt.command_timeout_ms = command_timeout_ms_;
opt.realtime_priority = realtime_priority_;
opt.cpu_affinity = cpu_affinity_;
opt.poll_battery = battery_hz_ > 0.0;
opt.battery_rate_hz = battery_hz_ > 0.0 ? battery_hz_ : 1.0;
if (!driver_.start(opt)) {
throw std::runtime_error("Failed to open UART port: " + port_);
}
단계 6) 토픽 구성#
속도와 배터리 토픽을 발행할 퍼블리셔를 만들고,
/cmd_vel을 구독해 setCommand()로 전달합니다.
speed_pub_ = create_publisher<std_msgs::msg::Float32>("vehicle_speed", 10);
battery_pub_ = create_publisher<std_msgs::msg::Float32>("battery_voltage", 10);
cmd_sub_ = create_subscription<geometry_msgs::msg::Twist>(
"cmd_vel", 10, [this](geometry_msgs::msg::Twist::SharedPtr msg) {
const float v = static_cast<float>(msg->linear.x);
const float w = static_cast<float>(msg->angular.z);
last_cmd_v_ = v;
last_cmd_w_ = w;
last_cmd_received_ = now();
driver_.setCommand(v, w);
});
단계 7) 수신 큐 drain 함수#
Driver의 수신 큐에서 메시지를 꺼내서 종류별로 publish 합니다.
void drainDriverQueue() {
for (int i = 0; i < 100; ++i) {
auto msg = driver_.tryPopMessage();
if (!msg) break;
if (auto* vs = std::get_if<KMC_HARDWARE::VehicleSpeed>(&*msg)) {
std_msgs::msg::Float32 out;
out.data = vs->mps;
speed_pub_->publish(out);
} else if (auto* bv = std::get_if<KMC_HARDWARE::BatteryVoltage>(&*msg)) {
std_msgs::msg::Float32 out;
out.data = bv->volt;
battery_pub_->publish(out);
}
}
}
단계 8) drain 타이머 + 명령 재전송 타이머#
수신 큐는 짧은 주기로 돌리고, 명령은 마지막 값을 주기적으로 업데이트합니다.
using namespace std::chrono_literals;
rx_timer_ = create_wall_timer(1ms, [this]() { drainDriverQueue(); });
if (command_refresh_hz_ > 0.0) {
const auto period = std::chrono::duration_cast<std::chrono::nanoseconds>(
std::chrono::duration<double>(1.0 / command_refresh_hz_));
cmd_timer_ = create_wall_timer(period, [this]() {
if (!last_cmd_received_.has_value()) return;
driver_.setCommand(last_cmd_v_, last_cmd_w_);
});
}
단계 9) main 함수#
int main(int argc, char** argv) {
rclcpp::init(argc, argv);
try {
auto node = std::make_shared<KmcHardwareDriverObserveNode>();
rclcpp::spin(node);
} catch (const std::exception& e) {
RCLCPP_ERROR(rclcpp::get_logger("kmc_hardware_driver_observe_node"), "Fatal: %s",
e.what());
}
rclcpp::shutdown();
return 0;
}
Result#
examples/Driver_ROS2/src/driver_observe_node.cpp
#include "KMC_driver.hpp"
#include <rclcpp/rclcpp.hpp>
#include <geometry_msgs/msg/twist.hpp>
#include <std_msgs/msg/float32.hpp>
#include <chrono>
#include <optional>
#include <string>
class KmcHardwareDriverObserveNode final : public rclcpp::Node {
public:
KmcHardwareDriverObserveNode() : Node("kmc_hardware_driver_observe_node") {
port_ = declare_parameter<std::string>("port", "/dev/ttyKMC");
baud_ = declare_parameter<int>("baud", 921600);
control_rate_hz_ = declare_parameter<double>("control_rate_hz", 100.0);
vehicle_speed_rate_hz_ = declare_parameter<double>("vehicle_speed_rate_hz", 50.0);
command_timeout_ms_ = declare_parameter<int>("command_timeout_ms", 200);
command_refresh_hz_ = declare_parameter<double>("command_refresh_hz", 50.0);
realtime_priority_ = declare_parameter<int>("realtime_priority", -1);
cpu_affinity_ = declare_parameter<int>("cpu_affinity", -1);
battery_hz_ = declare_parameter<double>("battery_hz", 1.0);
KMC_HARDWARE::Driver::Options opt;
opt.port = port_;
opt.serial.baudrate = baud_;
opt.serial.hw_flow_control = true;
opt.control_rate_hz = control_rate_hz_;
opt.vehicle_speed_rate_hz = vehicle_speed_rate_hz_;
opt.command_timeout_ms = command_timeout_ms_;
opt.realtime_priority = realtime_priority_;
opt.cpu_affinity = cpu_affinity_;
opt.poll_battery = battery_hz_ > 0.0;
opt.battery_rate_hz = battery_hz_ > 0.0 ? battery_hz_ : 1.0;
if (!driver_.start(opt)) {
throw std::runtime_error("Failed to open UART port: " + port_);
}
speed_pub_ = create_publisher<std_msgs::msg::Float32>("vehicle_speed", 10);
battery_pub_ = create_publisher<std_msgs::msg::Float32>("battery_voltage", 10);
cmd_sub_ = create_subscription<geometry_msgs::msg::Twist>(
"cmd_vel", 10, [this](geometry_msgs::msg::Twist::SharedPtr msg) {
const float v = static_cast<float>(msg->linear.x);
const float w = static_cast<float>(msg->angular.z);
last_cmd_v_ = v;
last_cmd_w_ = w;
last_cmd_received_ = now();
driver_.setCommand(v, w);
});
using namespace std::chrono_literals;
rx_timer_ = create_wall_timer(1ms, [this]() { drainDriverQueue(); });
if (command_refresh_hz_ > 0.0) {
const auto period = std::chrono::duration_cast<std::chrono::nanoseconds>(
std::chrono::duration<double>(1.0 / command_refresh_hz_));
cmd_timer_ = create_wall_timer(period, [this]() {
if (!last_cmd_received_.has_value()) return;
driver_.setCommand(last_cmd_v_, last_cmd_w_);
});
}
}
~KmcHardwareDriverObserveNode() override { driver_.stop(); }
private:
void drainDriverQueue() {
for (int i = 0; i < 100; ++i) {
auto msg = driver_.tryPopMessage();
if (!msg) break;
if (auto* vs = std::get_if<KMC_HARDWARE::VehicleSpeed>(&*msg)) {
std_msgs::msg::Float32 out;
out.data = vs->mps;
speed_pub_->publish(out);
} else if (auto* bv = std::get_if<KMC_HARDWARE::BatteryVoltage>(&*msg)) {
std_msgs::msg::Float32 out;
out.data = bv->volt;
battery_pub_->publish(out);
}
}
}
private:
KMC_HARDWARE::Driver driver_;
rclcpp::Publisher<std_msgs::msg::Float32>::SharedPtr speed_pub_;
rclcpp::Publisher<std_msgs::msg::Float32>::SharedPtr battery_pub_;
rclcpp::Subscription<geometry_msgs::msg::Twist>::SharedPtr cmd_sub_;
rclcpp::TimerBase::SharedPtr rx_timer_;
rclcpp::TimerBase::SharedPtr cmd_timer_;
std::string port_;
int baud_{921600};
double control_rate_hz_{100.0};
double vehicle_speed_rate_hz_{50.0};
int command_timeout_ms_{200};
double command_refresh_hz_{50.0};
int realtime_priority_{-1};
int cpu_affinity_{-1};
double battery_hz_{1.0};
float last_cmd_v_{0.0f};
float last_cmd_w_{0.0f};
std::optional<rclcpp::Time> last_cmd_received_;
};
int main(int argc, char** argv) {
rclcpp::init(argc, argv);
try {
auto node = std::make_shared<KmcHardwareDriverObserveNode>();
rclcpp::spin(node);
} catch (const std::exception& e) {
RCLCPP_ERROR(rclcpp::get_logger("kmc_hardware_driver_observe_node"), "Fatal: %s",
e.what());
}
rclcpp::shutdown();
return 0;
}